138 research outputs found

    Development of the Pulmonary Vein and the Systemic Venous Sinus: An Interactive 3D Overview

    Get PDF
    Knowledge of the normal formation of the heart is crucial for the understanding of cardiac pathologies and congenital malformations. The understanding of early cardiac development, however, is complicated because it is inseparably associated with other developmental processes such as embryonic folding, formation of the coelomic cavity, and vascular development. Because of this, it is necessary to integrate morphological and experimental analyses. Morphological insights, however, are limited by the difficulty in communication of complex 3D-processes. Most controversies, in consequence, result from differences in interpretation, rather than observation. An example of such a continuing debate is the development of the pulmonary vein and the systemic venous sinus, or “sinus venosus”. To facilitate understanding, we present a 3D study of the developing venous pole in the chicken embryo, showing our results in a novel interactive fashion, which permits the reader to form an independent opinion. We clarify how the pulmonary vein separates from a greater vascular plexus within the splanchnic mesoderm. The systemic venous sinus, in contrast, develops at the junction between the splanchnic and somatic mesoderm. We discuss our model with respect to normal formation of the heart, congenital cardiac malformations, and the phylogeny of the venous tributaries

    Identifying and Prioritizing Greater Sage-Grouse Nesting and Brood-Rearing Habitat for Conservation in Human-Modified Landscapes

    Get PDF
    BACKGROUND: Balancing animal conservation and human use of the landscape is an ongoing scientific and practical challenge throughout the world. We investigated reproductive success in female greater sage-grouse (Centrocercus urophasianus) relative to seasonal patterns of resource selection, with the larger goal of developing a spatially-explicit framework for managing human activity and sage-grouse conservation at the landscape level. METHODOLOGY/PRINCIPAL FINDINGS: We integrated field-observation, Global Positioning Systems telemetry, and statistical modeling to quantify the spatial pattern of occurrence and risk during nesting and brood-rearing. We linked occurrence and risk models to provide spatially-explicit indices of habitat-performance relationships. As part of the analysis, we offer novel biological information on resource selection during egg-laying, incubation, and night. The spatial pattern of occurrence during all reproductive phases was driven largely by selection or avoidance of terrain features and vegetation, with little variation explained by anthropogenic features. Specifically, sage-grouse consistently avoided rough terrain, selected for moderate shrub cover at the patch level (within 90 m(2)), and selected for mesic habitat in mid and late brood-rearing phases. In contrast, risk of nest and brood failure was structured by proximity to anthropogenic features including natural gas wells and human-created mesic areas, as well as vegetation features such as shrub cover. CONCLUSIONS/SIGNIFICANCE: Risk in this and perhaps other human-modified landscapes is a top-down (i.e., human-mediated) process that would most effectively be minimized by developing a better understanding of specific mechanisms (e.g., predator subsidization) driving observed patterns, and using habitat-performance indices such as those developed herein for spatially-explicit guidance of conservation intervention. Working under the hypothesis that industrial activity structures risk by enhancing predator abundance or effectiveness, we offer specific recommendations for maintaining high-performance habitat and reducing low-performance habitat, particularly relative to the nesting phase, by managing key high-risk anthropogenic features such as industrial infrastructure and water developments

    Changes in muscle-tendon unit length-force characteristics following experimentally induced photothrombotic stroke cannot be explained by changes in muscle belly structure.

    Get PDF
    Purpose The aim of this study was to assess the effects of experimentally induced photothrombotic stroke on structural and mechanical properties of rat m. flexor carpi ulnaris. Methods Two groups of Young-adult male Sprague–Dawley rats were measured: stroke (n = 9) and control (n = 7). Photothrombotic stroke was induced in the forelimb region of the primary sensorimotor cortex. Four weeks later, muscle–tendon unit and muscle belly length–force characteristics of the m. flexor carpi ulnaris, mechanical interaction with the neighbouring m. palmaris longus, the number of sarcomeres in series within muscle fibres, and the physiological cross-sectional area were measured. Results Stroke resulted in higher force and stiffness of the m. flexor carpi ulnaris at optimum muscle–tendon unit length, but only for the passive conditions. Stroke did not alter the length–force characteristics of m. flexor carpi ulnaris muscle belly, morphological characteristics, and the extent of mechanical interaction with m. palmaris longus muscle. Conclusion The higher passive force and passive stiffness at the muscle–tendon unit level in the absence of changes in structural and mechanical characteristics of the muscle belly indicates that the experimentally induced stroke resulted in an increased stiffness of the tendon

    Probability of Major Depression Classification Based on the SCID, CIDI and MINI Diagnostic Interviews : A Synthesis of Three Individual Participant Data Meta-Analyses

    Get PDF
    Three previous individual participant data meta-analyses (IPDMAs) reported that, compared to the Structured Clinical Interview for the DSM (SCID), alternative reference standards, primarily the Composite International Diagnostic Interview (CIDI) and the Mini International Neuropsychiatric Interview (MINI), tended to misclassify major depression status, when controlling for depression symptom severity. However, there was an important lack of precision in the results.To compare the odds of the major depression classification based on the SCID, CIDI, and MINI.We included and standardized data from 3 IPDMA databases. For each IPDMA, separately, we fitted binomial generalized linear mixed models to compare the adjusted odds ratios (aORs) of major depression classification, controlling for symptom severity and characteristics of participants, and the interaction between interview and symptom severity. Next, we synthesized results using a DerSimonian-Laird random-effects meta-analysis.In total, 69,405 participants (7,574 [11%] with major depression) from 212 studies were included. Controlling for symptom severity and participant characteristics, the MINI (74 studies; 25,749 participants) classified major depression more often than the SCID (108 studies; 21,953 participants; aOR 1.46; 95% confidence interval [CI] 1.11-1.92]). Classification odds for the CIDI (30 studies; 21,703 participants) and the SCID did not differ overall (aOR 1.19; 95% CI 0.79-1.75); however, as screening scores increased, the aOR increased less for the CIDI than the SCID (interaction aOR 0.64; 95% CI 0.52-0.80).Compared to the SCID, the MINI classified major depression more often. The odds of the depression classification with the CIDI increased less as symptom levels increased. Interpretation of research that uses diagnostic interviews to classify depression should consider the interview characteristics

    Co-expression network analysis reveals transcription factors associated to cell wall biosynthesis in sugarcane

    Full text link

    Major depression epidemiology from a diathesis-stress conceptualization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Major depression is a widely used diagnostic category but there is increasing dissatisfaction with its performance. The diathesis-stress model is an alternative approach that does not require the (sometimes arbitrary) imposition of categories onto the spectrum of depressive morbidity. However, application of this model has not been well explored and its consistency with available epidemiologic data is uncertain.</p> <p>Methods</p> <p>Simulation provides an opportunity to explore these issues. In this study, a simulation model based on an intuitive representation of diathesis-stress interaction was developed. Both diathesis and stress were represented using continuous distributions, without categorization. A diagnostic threshold was then applied to the simulation output to create nominal categories and to explore their consistency with available information.</p> <p>Results</p> <p>An apparently complex epidemiologic pattern emerged from the diathesis-stress interaction when thresholds were applied: incidence was time dependent, recurrence depended on the number of past episodes, baseline symptoms were associated with an increased risk of subsequent episodes and the remission rate declined with increasing episode duration.</p> <p>Conclusions</p> <p>A diathesis-stress conceptualization coupled with application of a threshold-based diagnostic definition may explain several of the apparent complexities of major depression epidemiology. Some of these complexities may be artifacts of the nominal diagnostic approach. These observations should encourage an empirical exploration of whether diathesis-stress interactions provide a more parsimonious framework for understanding depression than current approaches.</p
    corecore